GBMCharacteristicFunction
- class quantmetrics.price_calculators.gbm_pricing.gbm_characteristic_function.GBMCharacteristicFunction(model: LevyModel, option: Option)[source]
Bases:
object
Implements the characteristic function for a Geometric Brownian Motion (GBM) model.
Parameters
- modelLevyModel
A LevyModel object specifying the underlying asset’s model and its parameters.
- optionOption
An Option object specifying the option parameters: interest rate, strike price, time to maturity, dividend yield and the equivalent martingale measure.
- calculate(u: ndarray) ndarray [source]
Calculate the characteristic function for the GBM model.
Parameters
- unp.ndarray
Input array for the characteristic function.
Returns
- np.ndarray
The characteristic function values.
Notes
The characteristic function of the GBM under the risk-neutral measure is defined as follows:
\[\Phi^{\mathbb{Q}}(u) = \exp\left\{T \left[i u b^\mathbb{Q} -\frac{u^2}{2} c \right]\right\},\]Where:
\[b^{\mathbb{Q}} = r - \frac{\sigma^2}{2}, \quad c = \sigma^2\]\(\mathbb{Q}\) is the risk-neutral measure.
\(T\) is the time to maturity.
\(i\) is the imaginary unit.
\(u\) is the input variable.
\(r\) is the risk-free interest rate.
\(\sigma\) is the volatility of the underlying asset.
References